compute_score_running_avg
- ketos.neural_networks.dev_utils.detection.compute_score_running_avg(scores, window_size)[source]
This function calculates the running average of a given list of scores, over a defined window size.
Each element i in the output represents the running average of the elements in the scores from position i - window_size//2 to i + window_size//2.
This function pads the scores with the edge values of input to calculate the average for the edges.
- Args:
- scores: list or numpy array
A 1D, 2D or 3D sequence of numerical scores.
- window_size: int
The size of the window in frames to compute the running average. Must be an odd integer
- Returns:
- numpy array
A sequence of running averages, with the same length as the input.
Example:
>>> compute_score_running_avg([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 3) array([1.33333333, 2. , 3. , 4. , 5. , 6. , 7. , 8. , 9. , 9.66666667])
>>> compute_score_running_avg([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]], 3) array([[1.33333333, 1.33333333], [2. , 2. ], [3. , 3. ], [4. , 4. ], [4.66666667, 4.66666667]])
>>> np.random.seed(0) >>> scores = np.random.rand(6, 4) >>> compute_score_running_avg(scores, 3) array([[0.50709394, 0.69209095, 0.54770465, 0.66051312], [0.64537702, 0.58150833, 0.61069188, 0.6551837 ], [0.65178737, 0.65164409, 0.43344944, 0.50259907], [0.51730857, 0.713886 , 0.54697262, 0.49534546], [0.52229377, 0.85245835, 0.43689072, 0.57922354], [0.65915169, 0.81031232, 0.56703849, 0.81035683]])