Source code for ketos.neural_networks.inception

# ================================================================================ #
#   Authors: Fabio Frazao and Oliver Kirsebom                                      #
#   Contact: fsfrazao@dal.ca, oliver.kirsebom@dal.ca                               #
#   Organization: MERIDIAN (https://meridian.cs.dal.ca/)                           #
#   Team: Data Analytics                                                           #
#   Project: ketos                                                                 #
#   Project goal: The ketos library provides functionalities for handling          #
#   and processing acoustic data and applying deep neural networks to sound        #
#   detection and classification tasks.                                            #
#                                                                                  #
#   License: GNU GPLv3                                                             #
#                                                                                  #
#       This program is free software: you can redistribute it and/or modify       #
#       it under the terms of the GNU General Public License as published by       #
#       the Free Software Foundation, either version 3 of the License, or          #
#       (at your option) any later version.                                        #
#                                                                                  #
#       This program is distributed in the hope that it will be useful,            #
#       but WITHOUT ANY WARRANTY; without even the implied warranty of             #
#       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              #
#       GNU General Public License for more details.                               # 
#                                                                                  #
#       You should have received a copy of the GNU General Public License          #
#       along with this program.  If not, see <https://www.gnu.org/licenses/>.     #
# ================================================================================ #

""" inception sub-module within the ketos.neural_networks module

    This module provides classes that implement Inception Neural Networks.

    Contents:
        ConvBatchNormRelu class
        InceptionBlock class
        Inception class
        InceptionInterface

"""

import tensorflow as tf
from ketos.neural_networks.dev_utils.nn_interface import RecipeCompat, NNInterface, NNArch
import json




default_inception_recipe =  {'n_blocks':3,
                    'n_classes':2,
                    'initial_filters':16,        
                    'optimizer': RecipeCompat('Adam', tf.keras.optimizers.Adam, learning_rate=0.005),
                    'loss_function': RecipeCompat('BinaryCrossentropy', tf.keras.losses.BinaryCrossentropy),  
                    'metrics': [RecipeCompat('BinaryAccuracy',tf.keras.metrics.BinaryAccuracy),
                                RecipeCompat('Precision',tf.keras.metrics.Precision),
                                RecipeCompat('Recall',tf.keras.metrics.Recall)],
                    }

[docs] class ConvBatchNormRelu(tf.keras.Model): """ Convolutional layer with batch normalization and relu activation. Used in Inception Blocks Args: n_filters: int Number of filters in the convolutional layer filter_shape: int The filter (i.e.: kernel) shape. strides: int Strides to be used for the convolution operation padding:str Type of padding: 'same' or 'valid' """ def __init__(self, n_filters, filter_shape=3, strides=1, padding='same'): super(ConvBatchNormRelu, self).__init__() self.model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(n_filters, filter_shape, strides=strides, padding=padding), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU() ])
[docs] def call(self, x, training=None): """Calls the model on new inputs. In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs). Args: inputs: Tensor or list of tensors A tensor or list of tensors training: Bool Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode. Returns: A tensor if there is a single output, or a list of tensors if there are more than one outputs. """ x = self.model(x, training=training) return x
[docs] class InceptionBlock(tf.keras.Model): """ Inception Block for the Inception Architecture Args: n_filters:int The number of filters (i.e.: channels) to be used in each convolutional layer of the block strides: int Strides used in the first 3 and and 5th convolutional layers of the block """ def __init__(self, n_filters, strides=1): super(InceptionBlock, self).__init__() self.n_filters = n_filters self.strides = strides self.conv1 = ConvBatchNormRelu(self.n_filters, strides=self.strides) self.conv2 = ConvBatchNormRelu(self.n_filters, filter_shape=3, strides=self.strides) self.conv3_1 = ConvBatchNormRelu(self.n_filters, filter_shape=3, strides=self.strides) self.conv3_2 = ConvBatchNormRelu(self.n_filters, filter_shape=3, strides=1) self.pool = tf.keras.layers.MaxPooling2D(3, strides=1, padding='same') self.pool_conv = ConvBatchNormRelu(self.n_filters, strides=self.strides)
[docs] def call(self, x, training=None): """Calls the model on new inputs. In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs). Args: inputs: Tensor or list of tensors A tensor or list of tensors training: Bool Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode. Returns: A tensor if there is a single output, or a list of tensors if there are more than one outputs. """ x1 = self.conv1(x, training=training) x2 = self.conv2(x, training=training) x3_1 = self.conv3_1(x, training=training) x3_2 = self.conv3_2(x3_1, training=training) x4 = self.pool(x) x4 = self.pool_conv(x4, training=True) out = tf.concat([x1, x2, x3_2, x4], axis=3) return out
[docs] class InceptionArch(NNArch): """ Implements an Inception network, building on InceptionBlocks Args: n_blocks:int Number of Inception Blocks n_classes:int Number of possible classes initial_filters:int Number of filters (i.e.: channels) in the first block pre_trained_base: instance of InceptionArch A pre-trained inception model from which the residual blocks will be taken. Use by the the clone_with_new_top method when creating a clone for transfer learning """ def __init__(self, n_blocks, n_classes, pre_trained_base=None, initial_filters=16, **kwargs): super(InceptionArch, self).__init__(**kwargs) self.input_channels = initial_filters self.output_channels = initial_filters self.n_blocks = n_blocks self.n_classes = n_classes self.initial_filters = initial_filters if pre_trained_base: self.conv1 = pre_trained_base[0] self.blocks = pre_trained_base[1] else: self.conv1 = ConvBatchNormRelu(self.initial_filters) self.blocks = tf.keras.models.Sequential(name='dynamic-blocks') for block_id in range(self.n_blocks): for layer_id in range(2): if layer_id == 0: block = InceptionBlock(self.output_channels, strides=2) else: block = InceptionBlock(self.output_channels, strides=1) self.blocks.add(block) self.output_channels *= 2 self.avg_pool = tf.keras.layers.GlobalAveragePooling2D() self.dense = tf.keras.layers.Dense(self.n_classes) self.softmax = tf.keras.layers.Softmax()
[docs] def call(self, inputs, training=None): """Calls the model on new inputs. In this case call just reapplies all ops in the graph to the new inputs (e.g. build a new computational graph from the provided inputs). Args: inputs: Tensor or list of tensors A tensor or list of tensors training: Bool Boolean or boolean scalar tensor, indicating whether to run the Network in training mode or inference mode. Returns: A tensor if there is a single output, or a list of tensors if there are more than one outputs. """ output = self.call_frontend(inputs) output = self.conv1(output, training=training) output = self.blocks(output, training=training) output = self.avg_pool(output) output = self.dense(output) output = self.softmax(output) return output
[docs] def freeze_init_layer(self): """Freeze the initial convolutional layer""" self.layers[0].trainable = False
[docs] def unfreeze_init_layer(self): """Unfreeze the initial convolutional layer""" self.layers[0].trainable = True
[docs] def freeze_block(self, block_ids): """ Freeze specific inception blocks Args: blocks_ids: list of ints The block numbers to be freezed (starting from zero) """ for block_id in block_ids: self.layers[1].layers[block_id].trainable = False
[docs] def unfreeze_block(self, block_ids): """ Unfreeze specific inception blocks Args: blocks_ids: list of ints The block numbers to be freezed (starting from zero) """ for block_id in block_ids: self.layers[1].layers[block_id].trainable = True
[docs] def freeze_top(self): """Freeze the classification block""" for layer in self.layers[2:]: layer.trainable = False
[docs] def unfreeze_top(self): """Unfreeze the classification block""" for layer in self.layers[2:]: layer.trainable = True
[docs] def get_feature_extraction_base(self): """ Retrive the feature extraction base (initial convolutional layer + residual blocks) Returns: list containing the feature extraction layers """ return [self.conv1, self.blocks]
[docs] def clone_with_new_top(self, n_classes=None, freeze_base=True): """ Clone this instance but replace the original classification top with a new (untrained) one Args: n_classes:int The number of classes the new classification top should output. If None(default), the original number of classes will be used. freeze_base:bool If True, the weights of the feature extraction base will be froze (untrainable) in the new model. Returns: cloned_model: instance of InceptionArch The new model with the old feature extraction base and new classification top. """ if freeze_base == True: self.trainable = False if n_classes is None: n_classes = self.n_classes pre_trained_base = self.get_feature_extraction_base() cloned_model = type(self)(n_classes=n_classes, pre_trained_base=pre_trained_base) return cloned_model
[docs] class InceptionInterface(NNInterface): """ Creates an Inception model with the standardized Ketos interface. Args: num_blocks: int The number of inception blocks to be used. n_classes:int The number of classes. The output layer uses a Softmax activation and will contain this number of nodes, resulting in model outputs with this many values summing to 1.0. initial_filters:int The number of filters used in the first ResNetBlock. Subsequent blocks will have two times more filters than their previous block. optimizer: ketos.neural_networks.RecipeCompat object A recipe compatible optimizer (i.e.: wrapped by the ketos.neural_networksRecipeCompat class) loss_function: ketos.neural_networks.RecipeCompat object A recipe compatible loss_function (i.e.: wrapped by the ketos.neural_networksRecipeCompat class) metrics: list of ketos.neural_networks.RecipeCompat objects A list of recipe compatible metrics (i.e.: wrapped by the ketos.neural_networksRecipeCompat class). These metrics will be computed on each batch during training. """ @classmethod def _build_from_recipe(cls, recipe, recipe_compat=True): """ Build an Inception model from a recipe. Args: recipe: dict A recipe dictionary. optimizer, loss function and metrics must be instances of ketos.neural_networks.RecipeCompat. Example recipe: >>> {{'n_blocks':3, # doctest: +SKIP ... 'n_classes':2, ... 'initial_filters':16, ... 'optimizer': RecipeCompat('Adam', tf.keras.optimizers.Adam, learning_rate=0.005), ... 'loss_function': RecipeCompat('BinaryCrossentropy', tf.keras.losses.BinaryCrossentropy), ... 'metrics': [RecipeCompat('CategoricalAccuracy',tf.keras.metrics.CategoricalAccuracy)], } Returns: An instance of InceptionInterface. """ n_blocks = recipe['n_blocks'] n_classes = recipe['n_classes'] initial_filters = recipe['initial_filters'] if recipe_compat == True: optimizer = recipe['optimizer'] loss_function = recipe['loss_function'] metrics = recipe['metrics'] else: optimizer = cls._optimizer_from_recipe(recipe['optimizer']) loss_function = cls._loss_function_from_recipe(recipe['loss_function']) metrics = cls._metrics_from_recipe(recipe['metrics']) instance = cls(n_blocks=n_blocks, n_classes=n_classes, initial_filters=initial_filters, optimizer=optimizer, loss_function=loss_function, metrics=metrics) return instance @classmethod def _read_recipe_file(cls, json_file, return_recipe_compat=True): """ Read an Inception recipe saved in a .json file. Args: json_file:string Full path (including filename and extension) to the .json file containing the recipe. return_recipe_compat:bool If True, returns a dictionary where the optimizer, loss_function, metrics and secondary_metrics (if available) values are instances of the ketos.neural_networks.nn_interface.RecipeCompat. The returned dictionary will be equivalent to: >>> {'n_blocks':3, # doctest: +SKIP ... 'n_classes':2, ... 'initial_filters':16, ... 'optimizer': RecipeCompat('Adam', tf.keras.optimizers.Adam, learning_rate=0.005), ... 'loss_function': RecipeCompat('BinaryCrossentropy', tf.keras.losses.BinaryCrossentropy), ... 'metrics': [RecipeCompat('CategoricalAccuracy',tf.keras.metrics.CategoricalAccuracy)]} If False, the optimizer, loss_function, metrics and secondary_metrics (if available) values will contain a dictionary representation of such fields instead of the RecipeCompat objects: >>> {'n_blocks':3, # doctest: +SKIP ... 'n_classes':2, ... 'initial_filters':16, ... 'optimizer': {'name':'Adam', 'parameters': {'learning_rate':0.005}}, ... 'loss_function': {'name':'BinaryCrossentropy', 'parameters':{}}, ... 'metrics': [{'name':'CategoricalAccuracy', 'parameters':{}}]} Returns: recipe, according to 'return_recipe_compat. """ with open(json_file, 'r') as json_recipe: recipe_dict = json.load(json_recipe) optimizer = cls._optimizer_from_recipe(recipe_dict['optimizer']) loss_function = cls._loss_function_from_recipe(recipe_dict['loss_function']) metrics = cls._metrics_from_recipe(recipe_dict['metrics']) if return_recipe_compat == True: recipe_dict['optimizer'] = optimizer recipe_dict['loss_function'] = loss_function recipe_dict['metrics'] = metrics else: recipe_dict['optimizer'] = cls._optimizer_to_recipe(optimizer) recipe_dict['loss_function'] = cls._loss_function_to_recipe(loss_function) recipe_dict['metrics'] = cls._metrics_to_recipe(metrics) return recipe_dict def __init__(self, n_blocks=default_inception_recipe['n_blocks'], n_classes=default_inception_recipe['n_classes'], initial_filters=default_inception_recipe['initial_filters'], optimizer=default_inception_recipe['optimizer'], loss_function=default_inception_recipe['loss_function'], metrics=default_inception_recipe['metrics']): super(InceptionInterface, self).__init__(optimizer, loss_function, metrics) self.n_blocks = n_blocks self.n_classes = n_classes self.initial_filters = initial_filters self.model=InceptionArch(n_blocks=n_blocks, n_classes=n_classes, initial_filters=initial_filters) def _extract_recipe_dict(self): """ Create a recipe dictionary from an InceptionInterface instance. The resulting recipe contains all the fields necessary to build the same network architecture used by the instance calling this method. Returns: recipe:dict A dictionary containing the recipe fields necessary to build the same network architecture. The output is equivalent to: >>> {'n_blocks':3, # doctest: +SKIP ... 'n_classes':2, ... 'initial_filters':16, ... 'optimizer': RecipeCompat('Adam', tf.keras.optimizers.Adam, learning_rate=0.005), ... 'loss_function': RecipeCompat('BinaryCrossentropy', tf.keras.losses.BinaryCrossentropy), ... 'metrics': [RecipeCompat('CategoricalAccuracy',tf.keras.metrics.CategoricalAccuracy)]} """ recipe = {} recipe['interface'] = type(self).__name__ recipe['n_blocks'] = self.n_blocks recipe['n_classes'] = self.n_classes recipe['initial_filters'] = self.initial_filters recipe['optimizer'] = self._optimizer_to_recipe(self.optimizer) recipe['loss_function'] = self._loss_function_to_recipe(self.loss_function) recipe['metrics'] = self._metrics_to_recipe(self.metrics) return recipe